kth order slant Hankel operators on the polydisk

نویسندگان

چکیده

In this paper, we initiate the notion of k^{th} order slant Hankel operators on L^2(T^n) for k greater than or equal to 2 and n 1 where T^n denotes n-torus. We give necessary sufficient condition a bounded operator be discuss their commutative, compactness, hyponormal isometric property.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

kTH-ORDER SLANT TOEPLITZ OPERATORS ON THE FOCK SPACE

The notion of slant Toeplitz operators Bφ and kth-order slant Toeplitz operators B φ on the Fock space is introduced and some of its properties are investigated. The Berezin transform of slant Toeplitz operator Bφ is also obtained. In addition, the commutativity of kth-order slant Toeplitz operators with co-analytic and harmonic symbols is discussed.

متن کامل

Product and Commutativity of kth-Order Slant Toeplitz Operators

and Applied Analysis 3 Theorem3. Letφ, ψ∈H∞(T) orφ,ψ ∈ H(T), the following statements are equivalent: (1.1) U φ and U ψ commute; (1.2) U φ and U ψ essentially commute; (1.3) φ(zk)ψ(z) = φ(z)ψ(z); (1.4) there exist scalars α andβ, not both zero, such that αφ+ βψ = 0. Nowwe start to study the commutativity of two kth-order slant Toeplitz operators with harmonic symbols. Proposition4. Letφ(z)=∑n p...

متن کامل

Compact Hankel Operators on the Hardy Space of the Polydisk

We show that a big Hankel operator on the standard Hardy space of the polydisk D, n > 1, cannot be compact unless it is the zero operator. We also show that this result can be generalized to certain Hankel operators defined on Hardy-Sobolev spaces of the polydisk.

متن کامل

On kth-Order Slant Weighted Toeplitz Operator

Let β = [formula: see text] be a sequence of positive numbers with β0 = 1, 0 < β(n)/β(n+1) ≤ 1 when n ≥ 0 and 0 < β(n)/β(n-1) ≤ 1 when n ≤ 0. A kth-order slant weighted Toeplitz operator on L(2)(β) is given by U(φ) = W(k)M(φ), where M(φ) is the multiplication on L(2)(β) and W(k) is an operator on L(2)(β) given by W(k)e(nk)(z) = (β(n)/β(nk))e(n)(z), [formula: see text] being the orthonormal basi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nucleation and Atmospheric Aerosols

سال: 2023

ISSN: ['0094-243X', '1551-7616', '1935-0465']

DOI: https://doi.org/10.1063/5.0137024